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Nonfullerene  organic  solar  cells  (NF-OSCs)  have  become
a  research  hotspot,  and  the  device  efficiency  has  been  con-
stantly  updated[1−14].  The efficiency of  binary  and ternary  sol-
ar  cells  has  exceeded  18%[15−17] and  19%[18],  respectively.  In
the  early  study  of  OSCs,  the  development  of  organic  accept-
ors  lagged  behind  that  of  organic  donors.  In  addition  to  the
common  fullerene  acceptors  PC61BM  and  PC71BM,  there  is
growing  interest  in  developing  new  electron  acceptors.  The
two fullerene acceptors were derived from C60 and C70,  which
were  chemically  modified  to  improve  the  solubility.  Later,  Li
et  al.  developed  a  C60 derivative  ICBA[19] and  a  C70 derivative
IC70BA[20]. Compared with PC61BM and PC71BM, the lowest un-
occupied molecular orbital (LUMO) levels of these two accept-
ors increased by 0.17 and 0.19 eV, respectively. This is condu-
cive  to  the  increase  of  open-circuit  voltage  (Voc).  At  present,
the development of  fullerene acceptors  is  limited,  the reason
are as follows: (1) they show weak absorption in the visible re-
gion,  which  is  not  conducive  to  the  full  use  of  sunlight;  (2)  it
is difficult to improve the absorption by the chemical modifica-
tion; (3) difficult chemical synthesis and high cost; (4) it is diffi-
cult  to  control  the  morphology,  and  the  aggregation  easily
takes  place  in  thin  films.  The  advantages  of  fullerene  accept-
ors  are  also  obvious,  e.g.,  (1)  fullerene  acceptors  can  accept
and transport electrons in three dimensions due to their deloc-
alized  LUMO;  (2)  high  electron  mobility.  Perylene  diimides
(PDIs)  have been widely used in biological  imaging,  and they
are widely-studied non-fullerene acceptors. PDIs have many ad-
vantages, such as high electron mobility and high electron af-
finity[21].  In  1986,  C.  W.  Tang  of  Kodak  prepared  two-layer
OSCs  by  depositing  copper  phthalocyanine  (CuPc)  as  the
donor  and  perylene  tetracarboxylic  derivative  (PV)  as  the  ac-
cepter  in  vacuo,  achieving  a  power  conversion  efficiency
(PCE) of 1%[22]. PDI-based devices were made by solution pro-
cessing,  and  the  aggregation  yielded  micron-sized  crystals.
When  the  acceptors  were  blended  with  donors,  large  do-
mains  formed[23].  Since exciton diffusion length and life  were
limited, the domain size should be well controlled.

The  solar  cell  parameters  consist  of Voc,  short-circuit  cur-
rent density (Jsc) and fill  factor (FF). PDIs have two drawbacks:
(1)  the  low  LUMO  level  leads  to  low Voc;  (2)  PDIs  with  rigid
planar  structure  tend  to  form  excessive  aggregations,  affect-

ing  the  formation  of  uniform  films.  Thus,  lifting  LUMO  level
and  constructing  non-coplanar  perylene  monoimides  (PMIs)
to  improve Voc and  the  morphology  are  effective  strategies.
PMI-based  nonfullerene  acceptors  and  the  photovoltaic
performance are summarized in Fig.  1 and Table 1.  In 2015, a
nonfullerene  acceptor  PMI-F-PMI  with  a  fluorene  core  and
two  PMI  arms  was  reported.  It  presented  a  lift-up  LUMO
level  around –3.54  eV,  which matches  well  with  that  of P3HT
donor  to  yield  high Voc.  P3HT:PMI-F-PMI  solar  cells  gave  an
efficiency  of  2.3%,  with  a Voc of  0.98  V,  a Jsc of  5.61  mA/cm2,
and  an  FF  of  42.0%[24].  Later,  Li et  al.  used  a  polymer  donor
PTZ1,  obtaining  a  PCE  of  6.0%,  with  a Voc of  1.30  V,  a Jsc of
7.0  mA/cm2,  and  an  FF  of  63.5%[25].  The  favorable  morpho-
logy,  efficient  exciton  dissociation,  balanced  carrier  mobilit-
ies,  and  reduced  charge  recombination  also  contributed  to
the increase of Voc.

It is important to understand the effect of different aromat-
ic core on the photovoltaic performance. In 2022, Scharber et
al.  developed  a  non-planar  acceptor  PMI-FF-PMI,  consisting
of two PMI units bridged with a dihydroindeno[1,2-b]fluorene
unit.  PMI-FF-PMI:D18  solar  cells  gave  a  PCE  of  5.34%,  with  a
Voc of 1.41 V, a Jsc of 6.09 mA/cm2,  and an FF of 60.9%[26].  The
1.41  V Voc is  the  highest  record  for  solution-processed  OSCs
so far. Though producing a high Voc, the cells presented a relat-
ively  large  nonradiative  voltage  loss  (ΔVoc

non-rad)  of  0.25  V,
which  mainly  resulted  from  the  enhancement  of  spontan-
eous  carrier  generation  and  the  decrease  of  charge  carrier  in
CT  state  process[27].  More  recently,  Trimmel et  al.  developed
three PMI dimers by changing the substitution position (para,
meta  or  ortho)  on the benzene ring.  Compared with  P-pPh-P
and P-mPh-P and P3Ph,  P-oPh-P showed better  solubility  and
device  efficiency.  With  introducing two alkyl  chains  or  alkoxy
chains  onto  the  benzene  ring  in  P-pPh-P,  three  new  PMI  di-
mers  were  obtained,  namely  P-MePh-P,  P-HexPh-P,  P-DeOPh-
P. P-HexPh-P and P-DeOPh-P with long chains exhibited high-
er  crystallinity  than  P-MePh-P,  and  P-DeOPh-P  with  alkoxy
chains presented a favorable face-on orientation as  indicated
by  GIWAXS,  which  is  beneficial  to  charge  transport.  As  a  res-
ult, PBDB-T:P-DeOPh-P cells offered a PCE of 3.17%, with a Voc

of 1.00 V, a Jsc of 7.46 mA/cm2,  and an FF of 43.0%[28].  Tuning
the linking units is a simple approach to develop high-perform-
ance PMI-based acceptors.

In  short,  the Voc and  PCE  for  NF-OSCs  can  be  enhanced
via tailoring  the  molecular  structures  of  NFAs  and  donors.  In
order to regulate the morphology of the blends, different aro-
matic  cores  were  introduced  into  PMI-based  acceptors.  The
LUMO  energy  levels  should  also  be  tuned  to  match  that  of
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Fig. 1. The chemical structures for PMI-based non-planar acceptors.

Table 1.   Materials energy levels and the performance for solar cells.
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P-oPh-P –3.97 –6.38
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1.04 2.62 40 1.08

[28]
P3-Ph –4.13 –6.22 0.69 1.70 46 0.54
P-HexPh-P –3.85 –6.40 1.12 9.97 46 2.02
P-DeOPh-P –3.92 –6.31 1.00 7.46 43 3.17
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